First Report of Diaporthe australafricanaAssociated with Stem Canker on Blueberry in Chile

B. A. LatorreK. ElfarJ. G. EspinozaR. Torres, and G. A. Díaz, Pontificia Universidad Católica de Chile, Project Fondecyt 1100246, Vicuña Mackenna 4860, Santiago, Chile

pastedGraphic.png Open Access.

Stem cankers of blueberry (Vaccinium corymbosum L.) have been observed on as much as 15% of the plants in plantations in central and southern Chile since 2006. Symptoms consisted of apical necrosis of the shoots and brown-to-reddish necrotic lesions on the stems. Internally, a brown-to-reddish discoloration of the vascular tissue can be observed. Twenty, single-plant samples were collected in 12 blueberry plantings (approximately 33°27′ to 40°53′S). Isolations from the margins of the necrotic lesions on the stems were made by plating small pieces (5 mm) on potato dextrose agar acidified with 0.5 μl/ml of 92% lactic acid (APDA). The plates were incubated at 20°C for 5 to 7 days, and hyphal tips of white colonies with septate and hyaline mycelium were transferred to APDA. Colonies were then transferred to autoclaved Pinus radiata needles on 2% water agar and incubated for 20 days at 20°C. Twelve isolates producing black pycnidia and alpha conidia were tentatively identified as a Phomopsis sp. (teleomoph Diaporthe Nitschke). Other fungi, including Botryosphaeriaceae spp. and Pestalotiopsis spp., were also isolated. Alpha conidia were smooth, unicellular, hyaline, fusoid, biguttulate, and 6.4 to 7.9 × 2.3 to 3.3 μm (n = 20). Beta conidia were not observed. The internal transcribed spacer (ITS) region of the rDNA was amplified using primers ITS1 and ITS2 (4) and sequenced. BLASTn analysis of the 473-bp fragment (GenBank Accession No. JQ045712) showed 100% identity to Diaporthe australafricana Crous & J.M. van Niekerk from Vitis vinifera (3). The pathogenicity of D. australafricana was studied on blueberry cv. O’Neal using detached stems (n = 4) in the laboratory, on 2-year-old potted plants (n = 4) in a greenhouse, and on attached stems of mature plants (n = 4) established in the ground. Inoculations were done by placing mycelial plugs taken from 7-day-old APDA cultures in a 7-mm long incision made on the stems. Inoculations with sterile mycelium plugs served as negative controls. Inoculation sites were wrapped with Parafilm to avoid rapid dehydration. Dark brown, necrotic lesions on the internal tissues were obtained on all inoculated stems 15 days after inoculation. Mean lesion lengths were 18.0 ± 7.4 mm on detached stems, 7.8 ± 6.9 mm on stems of 2-year-old plants, and 7.3 ± 2.5 mm on mature plants in the field. No symptoms developed on control stems. Reisolations were successful in 100% of the inoculated stems and D. australafricana was confirmed by the presence of pycnidia and alpha conidia. To our knowledge, this is the first report of D. australafricana causing stem canker in V. corymbosum. Previously, this pathogen has been reported to be affecting Vitis vinifera in Australia and South Africa (3). These results do not exclude that other plant-pathogenic fungi may be involved in this syndrome (1,2).

References: (1) J. G. Espinoza et al. Plant Dis 92:1407, 2008. (2) J. G. Espinoza et al. Plant Dis. 93:1187, 2009. (3) J. M. van Niekerk et al. Australas. Plant Pathol. 34:27, 2005. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, NY, 1990.

Compartir